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Short Papers

A Low-Frequency Investigation into the Discontinuity
Capacitance of a Coaxial Line Terminated in a
Lossless, Dielectric-Loaded Circular Waveguide

J. D. MAHONY

Abstract —The problem of theoretically determining the normalized
discontinuity capacitance of a dielectric-loaded coaxial termination has
been reexamined and it is shown that, when frequency effects can be
ignored, the solution to the problem may be expressed in the form of a
rapidly convergent power series with power terms which depend only on
the relative permittivity of the dielectrics and with coefficients which
depend only on the line size. Values for the coefficients in the case of
typical line sizes are presented and the accuracy of the power series
solution is discussed.

1. INTRODUCTION

The problem of accurately determining the discontinuity
capacitance of a coaxial termination has received the attention of
many authors, not least because of its importance both in stan-
dards work [1-3] and in permittivity studies of biological or other
substances [4], [5]. In these respects, attention has in particular
focused on the problem of theoretically determining capacitance
changes due to permittivity effects when the frequency of oper-
ation is very low. It is the purpose of this communication to
reconsider the problem in relation to the coaxial termination
shown in Fig. 1 and to show how, in the electrostatic limit, one
might infer the behavior of such changes as a function of changes
in the permittivity. In order to do so, it will be necessary to
examine the governing equations from a quasi-numerical stand-
point. The analysis dealing with this particular problem is as-
sumed to be well known and only the relevant resulis need
therefore be considered.

II. FORMULATION

The circular waveguide region 0 < r < a is assumed to contain
a loss-free dielectric of permittivity ¢,, and the coaxial waveguide
region b'<r<a is assumed to contain a loss-free dielectric of
permittivity €. The electromagnetic boundary value problem
which arises when the coaxial line is fed with the TEM mode may
be addressed using either a variational formulation as described
in [1] for the air-filled termination or an appropriate Green’s
function integral equation formulation allied to a moment-method
solution. In both cases, it is possible to arrive at the same result,
which relates the discontinuity capacitance of the termination to
the solution of an infinite set of simultaneous equations whose
coefficients are slowly convergent series of the Fourier—Bessel
type. Specifically, it may be shown that the normalized discon-
tinuity capacitance C, which here is taken to mean the discon-
tinuity capacitance normalized to the permittivity ratio €, /¢, is
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given by the expression
0
5=x(b0— b b,,x,,). (1)
n=1
In the above, « is a constant which is given by the equation

ic=4'77'acl/(1n(b/a))2 2

and the x, are the solutions to the infinite set of simultaneous
equations

(m=1,2,---). (3)
n=1

The coefficients b,, b, and a,, in these equations are the

aforementioned series of the Fourier-Bessel type. They are given

explicitly by the expressions
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In the above, the usual Bessel function notation has been em-
ployed and the A ,a (j=1,2,---) are the ordered zeros of the
Bessel function Jy(A,a). The p,,a (m=1,2,--) are the ordered
zeros of the mixed Bessel function J,(p,,a)Y(p,,0)—
Jo(p,. ) Yy(p,,a) and §,,, denotes the Kronecker delta symbol:
k, and k, denote the different wavenumbers in the respective
dielectrics and the expressions are valid in the wavelength range
A,a>k,a. In the limiting case when ¢, = ¢,, these equations are
in essence the same as those obtained by Risley [1]. although the
latter’s results were presented in a somewhat more complicated
form. It is a straightforward matter to compute the normalized
discontinuity capacitance both for various line sizes and for
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different permittivities, and some typical low-frequency results
for the air-filled termination are shown in Table I. The results
shown in this table are suitable for standards work, being in good
agreement with results which have been predicted elsewhere
using other methods [2], [3]. The other results are also included in
the table for the purpose of making an immediate comparison.

ITII. ELECTROSTATIC SOLUTION

In the case of the electrostatic limit, that is, when the wave-
numbers k; and k, are equated to zero, it is possible to employ
readily established results from the theory of Fourier—Bessel
series [6] to reshape the coefficients b,, and a,,,, thereby provid-
ing a fresh insight into both their behavior and the behavior of
the solution to the system of equations. Specifically, the result
(Al) of the Appendix may be employed so that b, may be
rewritten in the form

1 2 1 L(N\b) [
bn = Rna El Aja(kja+p.ma) [Jl(}\ja) J Q)

and the result (A2) together with (A1) may be similarly employed
to present a,,, in the form

n
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From (4), b, is quite simply given by the expression

Aia3 Jl(}\Ja)

The principal advantage to be gained by reshaping the coeffi-
cients in this manner is that the opportunity arises to determine
the x,, and hence the normalized discontinuity capacitance C, as
a power series expansion in (1+ €, /¢€,)~ ! with coefficients which
depend only on the line size. Specifically, an iterative scheme
which involves a trivial matrix inversion is employed to obtain
solutions to the governing matrix equation (3). In order to
establish the scheme, the coefficient matrix of (8) is first decom-
posed into the sum of two matrices. One of these matrices
contains elements which are simply the infinite series terms of (8)
and the other matrix is purely diagonal, being formed from the
remaining terms. The decomposed matrix equation is then pre-
multiplied by the inverse of the diagonal matrix, and the subse-
quent expression is rearranged to establish the scheme. Ad-
ditional details are quite straightforward and the matter need not
be entertained further. As a result, the normalized discontinuity
capacitance can be realized in the form

(8)

)

(10)

Values of the leading coefficients in this expansion have been
computed in the case ‘of the aforesaid terminations and the
results are shown in Table II. Clearly, the coefficients suffer
appreciable decay and the power series appears to converge
rapidly for all values of the permittivity ratio. The corresponding
values for the normalized discontinuity capacitance are quickly
obtained for all permittivity ratios using (10) in conjunction with
the data in Table IL. In the case of the air-filled termination,
there is very good agreement with the low-frequency results
depicted in Table L.

0
C=x Z Yp(1+€1/52)‘1)§ Yo = bg.
p=0
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TABLE 1
NORMALIZED DISCONTINUITY CAPACITANCE FOR THE AIR-FILLED
TERMINATION
TERMINATION NORMALIZED DISCONTINUITY
(air filled CAPACITANCE (fF)
€, =1.000635)
FREQUENCY IN Hz
3 9
10 10
24.3 Ohm 399.02 ref. [2] 400.18 ref. [2]
(2a=19.05mm) 398.88 400.08
398.80 ref. [3} | -—--—-
50.0 Ohm 217.40 ref. [2] 218.07 ref. [2]
(2a=19.05mm) 217.05 217.72
217.00 ref. [3] 217.70 ref. [3]
50.0 Ohm 163.04 ref. [2] 163.336 ref. [2]
(2a=14.2875mm) | 162.80 163.09
162.70 ref. [31] 163.00 ref. [3]
50.0 Ohm 159.76 ref. [2} 160.039 ref. [2]
(2a=14.0mm) 159.53 159.79
159.40 ref. [3]) | ~—-—--
50.0 Ohm 79.88 ref. [2] 79.917 ref. [2]
(2a=7.0mm) 79.76 79.80
79.70 ref. [3] 79.70 ref. [3]
TABLE II

VALUES OF THE COEFFICIENTS IN THE
POWER SERIES EXPANSION

COEFFICIENTS ¥,

LINE SIZE IN OHMS

n 24.3 50.0

(a/b=1.5) (a/b=2.30291)

0 0.064390 0.152950
1 -0.004508 -0.018542
2 -0.001020 -0.004295
3 -0.000300 -0.001263
4 -0.000097 -0.000403
5 -0.000032 -0.000132
6 -0.000011 ~0.000044
7 -0.000004 -0.000015
8 ~0.000001 ~0.000005
9 -0.000000 -0.000002

Although the results which have been obtained using (10) are
strictly valid only in the limiting case of zero frequency, there will
inevitably be a small range of frequencies over which the results
may still be of practical significance. For example, it is apparent
from the text that in the case of the air-filled termination, the
low-frequency formula is accurate to within about 0.3 percent for
frequencies up to 1 GHz. The extent of the frequency tradeoff
against permittivity which is required to sustain confidence in the
low-frequency formula may be ascertained by comparing results
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Fig 2 Relative accuracy bounds for the low-frequency formula.

in the frequency-dependent case with those from the formula.
The results of a comparison in the case of the 24.3-Q line are
shown in Fig. 2 and similar results in respect of the 50.0-@ line of
the same outer diameter were also obtained, but they were found
to be no less representative than those shown in the figure. For
any point on any one of the curves in this figure, there corre-
sponds a permittivity ratio and a frequency beyond which the
specified relative accuracy cannot be sustained.

As a matter of interest, the results contained herein were
obtained using a desktop micromputer, and all computations
involving Bessel functions were carried out using the polynomial
approximation representation for such functions [7]. The num-
bers of modes used to match the field in the annular domain to
that in the circular domain were 50 and 100, respectively, and
although no attempt has been made to determine the absolute
accuracy of the computations, the results compare favourably
with those of [2] in the case of the air-filled termination, for
which an accuracy of about +0.1 fF was reported.

APPENDIX

It may be deduced from an established result in the theory of
Fourier-Bessel series that, for the A @ and p,,a as defined in the
text, the following formulas are satisfied:

°° 1 [L(AB) P
5 =0 Al
El (p;naz—}\iaz) _JI(Xja) (A1)
and
i 1 Jo()\/b)_2= 1 Joz(ﬂmb)_
J=1 ([L%naz—lea2)2 Jl(xja)_ 4#3,102 J()z(”’ma)
(A2)
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A Printed Circuit Stub Tuner for Microwave
Integrated Circuits

B. J. MINNIS

Abstract —A novel microwave tuning element capable of continuous
adjustment has been realized in the form of a planar printed circuit. As
such, it is suitable for incorporation into microwave integrated circuits
(MIC’s), where it can be used for fine-tuning the impedance match
between two parts of a circuit when the two parts are either subject to
variations due to manufacturing tolerances or are difficult to model. In
either case, the tuner is a compact on-circuit tuning facility which does not
have to be removed after use. The tuner has been shown to have unique
impedance-transforming properties, being capable of matching any realiz-
able impedance to a 50-Q load. Its main part consists of a coupled-line
section and across the gap in the section at different places along its length
are positioned two short-circuit bridge conductors. Movement of these
bridges produces the variation in impedance transformation. 3-10,/8612437

1. INTRODUCTION

Stub tuners in coaxial form have been widely used for many
years. Coaxial tuners usually comprise two or three short-circuit
stubs of adjustable length connected in shunt with a main
“through” line with some appropriate separation. Their chief
application has been in the field of microwave measurements
where there is a need for continuous adjustment of the imped-
ance presented to a device under test in order to optimize some
other parameter such as power transfer or noise figure. Notable
examples include load pull measurements on large signal amplify-
ing devices and noise parameter measurements on low-noise
FET’s.

While being well suited to the measurement role, coaxial tuners
or tuners with the same basic circuit concept cannot be included
as integral parts of microwave integrated circuits (MIC’s). There
are certain types of circuit where inclusion of a continuously
variable tuning element would be extremely useful. They are
mostly narrow-band circuits where perhaps a large spread in
device characteristics results in a need for individual circuit
tuning or where the use of a nonlinear device has resulted in

.
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